Polynomial interpolation on interlacingrectangular grids

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High dimensional polynomial interpolation on sparse grids

We study polynomial interpolation on a d-dimensional cube, where d is large. We suggest to use the least solution at sparse grids with the extrema of the Chebyshev polynomials. The polynomial exactness of this method is almost optimal. Our error bounds show that the method is universal, i.e., almost optimal for many different function spaces. We report on numerical experiments for d = 10 using ...

متن کامل

On partial polynomial interpolation

The Alexander-Hirschowitz theorem says that a general collection of k double points in P imposes independent conditions on homogeneous polynomials of degree d with a well known list of exceptions. We generalize this theorem to arbitrary zero-dimensional schemes contained in a general union of double points. We work in the polynomial interpolation setting. In this framework our main result says ...

متن کامل

On multivariate polynomial interpolation

We provide a map Θ 7→ ΠΘ which associates each finite set Θ of points in C with a polynomial space ΠΘ from which interpolation to arbitrary data given at the points in Θ is possible and uniquely so. Among all polynomial spaces Q from which interpolation at Θ is uniquely possible, our ΠΘ is of smallest degree. It is also Dand scale-invariant. Our map is monotone, thus providing a Newton form for...

متن کامل

Polynomial Interpolation

Consider a family of functions of a single variable x: Φ(x; a0, a1, . . . , an), where a0, . . . , an are the parameters. The problem of interpolation for Φ can be stated as follows: Given n + 1 real or complex pairs of numbers (xi, fi), i = 0, . . . , n, with xi 6= xk for i 6= k, determine a0, . . . , an such that Φ(xi; a0, . . . , an) = fi, i = 0, . . . , n. The above is a linear interpolatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Approximation Theory

سال: 2017

ISSN: 0021-9045

DOI: 10.1016/j.jat.2017.06.002